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ABSTRACT: Quantitative structure-property relation-
ships (QSPR) studies were performed for kinetic chain-
transfer constants of 90 agents on styrene polymerization
at 60�C. By using stepwise multilinear regression analysis
(MLRA) and artificial neural network (ANN), linear and
nonlinear models containing seven descriptors were
obtained with R2 of 0.7866 and 0.8661 for the training set,
respectively. The reliability of the proposed models was
validated through the test set. The descriptors involved in

the models are related to the molecular conformational
changes and some functional groups. As these descriptors
are directly calculated from the molecular structure, the
proposed models can be employed to estimate the chain-
transfer constants for styrene. VC 2011 Wiley Periodicals, Inc.
J Appl Polym Sci 123: 356–364, 2012
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INTRODUCTION

The chain-transfer constant is an important parame-
ter in polymer chemistry since an understanding of
chain-transfer clarifies the microkinetic process in
polymerization reactions.1 The transfer reaction
in free-radical polymerization describes a process in
which the polymer radical reacts with another mole-
cule (monomer, polymer, solvent, modifier, etc.)
forming a dead polymer and new radical. This new
radical can continue the kinetic chain2:

P�
n þM �!kp P�

nþ1

P�
n þ RX �!ktr;X PnRþ X�

X� þM �!ki;X P�
1

where Pn is a polymer molecule of chain length n,
RX is a transfer agent, and M is a monomer mole-
cule. The kinetic chain-transfer constant is defined as
dimensionless quantity by the following ratio

CX ¼ ktr;X=kp

where kp is the rate constant of free-radical polymer-
ization propagation.
It is assumed that (a) all new radicals react only

by formation of growing polymer radicals; (b) all
polymer radicals have equal reactivity regardless of
their size; (c) all rate constants are independent of
solvent; (d) the consumption of monomer by initia-
tion and transfer is negligible compared with propa-
gation; (e) a steady-state concentration of polymer
radicals is quickly established (d[P�]/dt ¼ 0).
Accordingly, the number-average degree of poly-
merization in the presence of transfer agent X (Pn) is
given as follows:

1

Pn
¼ 1

Pn0
þ
X

CX
½X�
½M�

where Pn0 is the number-average degree of polymer-
ization in the absence of any transfer agent, and [M]
and [X] are the concentrations of monomer and
transfer agent, respectively.2 It can be seen that the
chain-transfer reactions modulate the molecular
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weight and consequently its distribution during
polymerization. Molecular weight and molecular
weight distributions have considerable effects on
polymer processability. Thus, control of these macro-
molecular features is required when polymers with
high molecular weight are not suitable for a given
application.3 Knowledge of chain-transfer constants
is extremely meaningful for both the laboratory and
industrial scale-up of polymerization processes.
Experimental CX data have been available for a lot
of systems; however, a relatively accurate prediction
method is still required when experimental data is
lacking.

Alternatively, the quantitative structure-property
relationships (QSPR) provide a promising approach
for estimating the CX values based on descriptors
derived solely from the molecular structure to fit ex-
perimental data. The QSPR approach is based on the
assumption that the variation of the behavior of the
compounds, as expressed by any measured physico-
chemical properties, can be correlated with numeri-
cal changes in structural features of all compounds,
termed ‘‘molecular descriptors.’’4–9 The advantage of
this approach lies in the fact that it requires only the
knowledge of the chemical structure and is not de-
pendent on any experimental properties. The statis-
tic techniques commonly used in QSPR studies are
linear and nonlinear methods. The most commonly
used linear method is the stepwise multilinear
regression analysis (MLRA), which can run forward
or backward. The QSPR approach has been used
quite extensively to predict many properties in poly-
mer chemistry and physics, such as refractive
index,10–17 glass transition temperature,12,18–26 lower
critical solution temperature,27–30 Flory-Huggins pa-
rameters,31,32 intrinsic viscosity,33,34 solubility param-
eters,35 and monomer reactivity parameters.36–38

However, there have been relatively few attempts to
correlate and predict the chain-transfer constants.
Ignatz-Hoover et al.3 used the Comprehensive
Descriptors for Structural and Statistical Analysis
(CODESSA) program to develop linear three- and
five-parameter correlations with R2 of 0.725 and
0.818 for a set of logCX values for 90 agents on sty-
rene polymerization at 60�C.

Because of the complex relationships existing
between the property of the molecules and the struc-
tures, nonlinear modeling methods are sometimes
better to use. To deal with nonlinear behavior, dif-
ferent algorithms have been proposed, and among
them the artificial neural network (ANN) has found
much popularity in QSPR studies.21 The goal of
the present work is to produce robust QSPR models
that could predict the transfer constants for styrene
polymerization at 60�C using both MLRA and
ANN, based on descriptors calculated by Dragon
software.39

MATERIALS AND METHODS

Data set

The experimental chain-transfer constants of 90
transfer agents for styrene at 60�C (Table I) were
taken from the article by Ignatz-Hoover et al.3 The
reported logCX values ranged from about �1.5 to
6.5. Among them, 60 compounds were randomly
chosen as the training set, and the other 30 com-
pounds were used as the test set.

Descriptor generation

The structures of all molecules were preoptimized
using MMþ molecular mechanics force field (Polak-
Ribiere algorithm) in the HYPERCHEM program.40

The final geometries of the minimum energy conforma-
tion were obtained by the semiempirical AM1 method
at a restricted Hartree-Fock level with no configuration
interaction, applying a gradient norm limit of 0.01
kcal�Å�1�mol�1 as a stopping criterion. Then a total of
1664 molecular descriptors for each molecule were cal-
culated on the resulting geometry with Dragon soft-
ware.39 These descriptors include (a) 0D-constitutional
(atom and group counts); (b) 1D-functional groups and
atom centered fragments; (c) 2D-topological, BCUTs,
walk and path counts, autocorrelations, connectivity
indices, information indices, topological charge indices,
and eigenvalue-based indices; and (d) 3D-Randic mo-
lecular profiles from the geometry matrix, geometrical,
WHIM, and GETAWAY descriptors.
To reduce redundant and nonuseful information,

descriptors with constant or near constant values and
pair intercorrelations greater than 0.9941 were excluded
in a prereduction step. The 854 remaining descriptors
underwent subsequent descriptor selection.

Model development and validation

Stepwise MLRA with Leave-One-Out (LOO) cross-
validation was used to select descriptors for the lin-
ear QSPR models on the training set. F-to-enter and
F-to-remove were 4 and 3, respectively. The models
were justified by the R2, the cross-validated R2, the
standard error of estimation s and the F ratio values.
A variance inflation factor (VIF) was calculated to
test if multicollinearities existed among the descrip-
tors, which is defined as

VIF ¼ 1

1� R2
j

(1)

where R2
j is the squared correlation coefficient between

the jth coefficient regressed against all the other des-
criptors in the model. Models would not be accepted if
they contain descriptors with VIFs above a value of 5.42

The nonlinear model was then developed by sub-
mitting the selected descriptors from MLRA to a
three-layer, fully connected, feed-forward ANN. The
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TABLE I
Experimental and Predicted Values of logCX

Transfer agent name Exp. logCX

MLRA ANN

Pred. logCX Diff. Pred. logCX Diff.

Training set
(1,1,2,2-Tetraphenylethyl)benzene 4.30 4.45 �0.15 4.00 0.30
(3-Bromophenyl)acetonitrile 1.84 2.17 �0.33 1.53 0.31
(4-Methoxyphenyl)acetonitrile 1.71 1.31 0.40 1.70 0.01
(E)-2-butenal oxime 3.18 3.37 �0.19 3.03 0.15
(tert-Butyl)benzene �1.30 �0.10 �1.20 �0.40 �0.90
1,2,3-Benzenetriol 4.02 3.84 0.18 4.58 �0.56
1,2-Benzenediol 3.13 2.42 0.71 2.61 0.52
1,2-Benzenediol 3.13 2.42 0.71 2.61 0.52
1,3,5-trinitrobenzene 5.55 4.05 1.50 4.31 1.24
1,4-Di(sec-butyl)benzene 1.03 1.17 �0.14 1.84 �0.81
1,4-Dibutylbenzene 0.85 0.31 0.54 0.69 0.16
1,4-Dihydroxybenzene 0.56 2.52 �1.96 1.33 �0.77
1,4-Diisopropylbenzene 0.52 0.59 �0.07 0.42 0.10
1-Chloro-2-methylpropane 0.15 0.37 �0.22 0.29 �0.14
1-Chloro-4-ethynylbenzene 2.21 1.26 0.95 1.94 0.27
1-Chlorobenzene �0.10 0.03 �0.13 0.12 �0.22
1-Propenaloxime 4.03 0.90 3.13 1.02 3.01
2,3,5,6-Tetramethylphenol 2.76 2.61 0.15 2.71 0.05
2,4,6-Trinitrophenol 5.32 6.20 �0.88 5.25 0.07
2,5-Cyclohexadiene-1,4-dione 6.36 5.82 0.54 6.43 �0.07
2,6-Di(2-propyl)phenol 2.49 2.46 0.03 2.56 �0.07
2-Bromo-1,3,5-trinitrobenzene 5.76 5.47 0.29 5.61 0.15
2-Butanone 0.70 0.37 0.33 0.37 0.33
2-Chloroacetyl chloride 3.52 3.53 �0.01 3.72 �0.20
2-Chlorobutane 0.08 0.53 �0.45 0.47 �0.39
2-Methoxy-1,3,5-trinitrobenzene 5.31 4.74 0.57 4.75 0.56
2-Methyl-1-penten-3-one oxime 3.63 3.40 0.23 3.43 0.20
2-Methylphenol 1.63 1.95 �0.32 1.78 �0.15
2-Phenylacetic acid 0.78 1.60 �0.82 0.98 �0.20
2-Propen-1-ol 0.18 0.29 �0.11 0.03 0.15
3-Buten-2-one oxime 3.43 3.57 �0.14 3.69 �0.26
3-Chlorobenzaldehyde 1.14 1.69 �0.55 1.33 �0.19
3-Methyl-3-buten-2-one oxime 3.04 3.48 �0.44 3.18 �0.14
4-(tert-Butyl)-1,2-benzenediol 3.56 2.78 0.78 3.47 0.09
4-Chlorobenzaldehyde 0.94 1.73 �0.79 1.30 �0.36
4-Chlorobenzenesulfonyl chloride 3.88 4.06 �0.18 4.48 �0.60
4-Methoxybenzenesulfonyl chloride 3.49 3.76 �0.27 4.03 �0.54
4-Methyl-2-pentanone oxime 3.36 1.45 1.91 2.01 1.35
4-Methylbenzenesulfonyl chloride 3.50 3.52 �0.02 4.20 �0.70
Acetonitrile �0.36 �0.05 �0.31 �0.12 �0.24
Acetyl bromide 3.93 3.92 0.01 3.75 0.18
Benzaldehyde 0.66 0.92 �0.26 0.49 0.17
Benzene �1.56 �1.02 �0.54 �1.31 �0.25
Chloro(dimethyl)germane 4.52 4.52 0.00 4.20 0.32
Chloroacetic acid 1.46 1.66 �0.20 1.65 �0.19
Di(2-propenyl)propanedioate 0.72 2.02 �1.30 1.13 �0.41
Dichloro(ethyl)germane 4.76 5.46 �0.70 4.99 �0.23
Dichloroacetic acid 1.54 2.31 �0.77 1.92 �0.38
Diethyl 2,2-dibromopropanedioate 4.08 2.48 1.60 2.96 1.12
Diethyl malonate �0.33 1.31 �1.64 0.57 �0.90
Diethyl-2,2-dichloropropanedioate 1.48 2.61 �1.13 1.07 0.41
Diethyl-2-bromopropanedioate 2.85 2.48 0.37 2.96 �0.11
Methyl 2-chloroacetate �0.52 0.91 �1.43 0.77 �1.29
N,N-diethenylphenylamine 2.11 0.43 1.68 0.58 1.53
Phenylamine 0.30 �0.28 0.58 �0.64 0.94
Phenylmethanesulfonyl chloride 3.50 2.96 0.54 3.66 �0.16
Tetrabromomethane 4.33 3.92 0.41 4.57 �0.24
Tetrachloromethane 2.03 1.72 0.31 1.15 0.88
Trichloroacetic acid 1.82 2.26 �0.44 2.69 �0.87
Triphenylgermane 3.36 3.72 �0.36 4.03 �0.67

(Continued)
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number of input neurons was equal to that of the
descriptors in the linear model. The number of hidden
neurons was optimized by trial and error procedure on
calculations of the training process. One output neuron
was used to represent the experimental logCX. The
network was trained using the quasi-Newton BFGS
(Broyden-Fletcher-Goldfarb-Shanno) algorithm.43–46 To
avoid overtraining, one tenth data from the training set
were randomly selected as separate validation set to
monitor the training process; that is, during the train-
ing of the network the performance was monitored by
predicting the values for the systems in the validation
set. When the results for the validation set ceased to
improve, the training was stopped.

Validation of the linear and nonlinear models was
also performed by using the external test set com-
posed of data not used to develop the prediction
model. The external R2

CV;ext for the test sets is deter-
mined with eq. (2):

R2
CV;ext ¼ 1�

Ptest
i¼1

ðyexp t � ycalcÞ2

Ptest
i¼1

ðyexp t � �ytestÞ2
(2)

where ytest is the averaged value for the response
variable of the test set. According to Golbraikh and
Tropsha,47 a QSPR model is successful if it satisfies
several criteria as follows:

R2
CV;ext > 0:5 (3a)

r2 > 0:6 (3b)

ðr2 � r20Þ=r2 < 0:1 or ðr2 � r020Þ=r2 < 0:1 (3c)

0:85 � k � 1:15 or 0:85 � k0 � 1:15 (3d)

where r is the correlation coefficient between the
calculated values and experimental values in the test
set. r20 (calculated vs. observed values) and r00

2

(observed vs. calculated values) are coefficients of
determination. k and k0 are slopes of regression lines
through the origin of calculated versus observed and
observed versus calculated, respectively. Detailed
mathematical definitions of these parameters can be
found in the publication of Golbraikh and Tropsha.47

RESULTS AND DISCUSSION

MLRA model

The stepwise MLRA with LOO cross-validation was
used to select descriptors and develop linear models

TABLE I. Continued

Transfer agent name Exp. logCX

MLRA ANN

Pred. logCX Diff. Pred. logCX Diff.

Test set
(1,2-Dibromoethyl)benzene 3.29 2.33 0.96 3.33 �0.04
(4-Chlorophenyl)acetonitrile 1.82 1.58 0.24 1.15 0.67
(sec-Butyl)benzene 0.79 0.43 0.36 0.42 0.37
1,2,3-Benzenetriol 4.02 3.84 0.18 4.58 �0.56
1,2-Benzenediol 3.13 2.42 0.71 2.61 0.52
1-Bromo-4-ethynylbenzene 2.28 1.79 0.49 2.74 �0.46
1-Bromobenzene 0.25 0.60 �0.35 0.50 �0.25
1-Bromobutane �1.22 0.66 �1.88 0.51 �1.73
1-Chlorobutane �1.40 0.06 �1.46 0.37 �1.77
1-Ethylbenzene �0.16 �0.20 0.04 �0.75 0.59
1-Ethynyl-4-nitrobenzene 3.50 2.12 1.38 3.09 0.41
2,4,6-Trinitrophenylamine 5.07 5.15 �0.08 4.38 0.69
2,5-Dimethyl-2,5-cyclohexadiene-1,4-dione 5.63 7.18 �1.55 6.26 �0.63
2-Bromoacetic acid 2.63 2.26 0.37 2.49 0.14
2-Methyl-2-propenal oxime 4.11 3.70 0.41 3.28 0.83
4-(tert-Butyl)-1,2-benzenediol 3.56 2.78 0.78 3.47 0.09
4-Bromobenzaldehyde 1.08 2.29 �1.21 2.40 �1.32
4-Formylbenzonitrile 1.88 1.84 0.04 1.88 0.00
4-Methylphenol 1.59 1.98 �0.39 1.75 �0.16
Acetaldehyde 0.93 �0.27 1.20 �0.24 1.17
Benzenesulfonyl chloride 3.64 3.32 0.32 3.81 �0.17
Chloro(diethyl)germane 4.50 3.87 0.63 4.79 �0.29
Dimethyl ketone 0.61 0.42 0.19 �0.01 0.62
Ethyl 2,4,6-trinitrobenzoate 5.76 6.48 �0.72 6.61 �0.85
Iodoacetic acid 3.90 2.71 1.19 2.80 1.10
Methanesulfonyl chloride 3.07 2.85 0.22 3.87 �0.80
N,N-dimethylacetamide 0.66 1.02 �0.36 0.23 0.43
Phenol 1.15 1.00 0.15 1.08 0.07
Trichloromethane 0.08 1.92 �1.84 0.60 �0.52
Triethylgermane 3.38 2.71 0.67 2.72 0.66
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on the training set. It is clear that univariant correla-
tions between logCX and different descriptors have a
small value for the correlation coefficient. This indi-
cates that logCX is not linearly correlated with any
of the molecular descriptors. The R2 increases gradu-
ally with the increased number of descriptors. When
adding another descriptor did not significantly
improve the statistics of a model, it was determined
that the optimum subset size had been achieved. To
avoid over-parameterization of the models, such as
those which contain an excess of descriptors and are
difficult to interpret in terms of physical interactions,
an increase of the R2 value of less than 0.01 was cho-
sen as the breakpoint criterion. Thus, a seven-param-
eter model with R2 of 0.7866 and R2

CV of 0.7355 was
obtained, which is as the following:

logCX¼�5:418þ 6:105½SHP2�
þ 0:571½G2� � 1:071½Mor20u� þ 3:840½RTuþ�
þ 0:775½nCconj� þ 1:829½nRCOX�
þ 0:768½nArOH�

n ¼ 60;R2 ¼ 0:7866;R2
CV ¼ 0:7355;

s ¼ 0:92; F ¼ 27:4 ð4Þ

Here, SHP2 is average shape profile index of order
2; G2 is gravitational index G2 (bond-restricted);
Mor20u is 3D-MoRSE signal 20/unweighted; RTuþ
corresponds to R maximal index/unweighted;
nCconj corresponds to the number of nonaromatic
conjugated C(sp2); nCOX corresponds to the number
of acyl halogenides (aliphatic); nArOH corresponds
to the number of aromatic hydroxyls, respectively.48

The cross-validated correlation coefficient R2
CV ¼

0.7355 illustrates the reliability of the model by
focusing on the sensitivity of the model to the
elimination of any single data point. The statistical
characteristics of the seven descriptors are given in
Table II, which indicate that all the descriptors are
highly significant from the t-test values. The VIF val-
ues (less than 5) suggest that these descriptors are
weakly correlated with each other. Thus, the model
can be regarded as an optimal regression equation.

The calculated results of the logCX values from
eq. (4) for the training and test sets are shown in
Table I and Figure 1. Only two compounds (1-prope-
naloxime, 1,4-dihydroxybenzene) are outliers accord-
ing to 95% statistical reliability level (61.84).

ANN model

The ANN has become an important and widely
used nonlinear modeling technique for QSPR stud-
ies. The mathematical adaptability of ANN com-
mends it as a powerful tool for pattern classification
and building predictive models. A particular advant-
age of ANN is its inherent ability to incorporate
nonlinear dependencies between the dependent and
independent variables without using an explicit
mathematical function. Among the neural network
learning algorithms, the back-propagation (BP)
method49 is one of the most commonly used meth-
ods. The drawback of BP is that the training proc-
esses slowly, because the gradient-descent algorithm
is usually used for minimizing the sum-of-squares
error. In this study, the quasi-Newton BFGS algo-
rithm was used to develop nonlinear models. The

TABLE II
Characteristics of the Descriptors in the MLRA Model

Descriptor Descriptor type Coefficient Error t-Value t-Probability VIF

Constant �5.418 1.254 �4.320 0.000
SHP2 Randic molecular profiles 6.105 1.820 3.354 0.001 2.057
G2 Geometrical descriptors 0.571 0.045 12.593 0.000 1.727
Mor20u 3D-MoRSE descriptors �1.071 0.343 �3.118 0.003 2.449
RTuþ GETAWAY descriptors 3.840 1.638 2.344 0.023 1.484
nCconj Functional group counts 0.775 0.118 6.590 0.000 1.105
nRCOX Functional group counts 1.829 0.729 2.510 0.015 1.212
nArOH Functional group counts 0.768 0.187 4.097 0.000 1.047

n ¼ 60, R2 ¼ 0.7866, R2
CV ¼ 0.7355, s ¼ 0.92, F ¼ 27.4.

Figure 1 Plot of predicted vs. experimental values of log CX

using the MLRA model. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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advantages of using the BFGS algorithm are that spec-
ifying rate or momentum is not necessary and the
training is much more rapid.50 The seven descriptors
from the best MLRA model were used as inputs to
the network. The number of hidden neurons is an im-
portant parameter influencing the performances of
the ANN. The usual rule of thumb is that the weights
and biases should be less than the samples so that the
model achieved by the network is stationary.51 In the
situation of this work, with 60 samples in the training
set, the number of the hidden neurons should not
therefore be greater than six. Figure 2 shows changes
in the R2 value while optimizing neural network
architecture with respect to the number of hidden
neurons. Thus, a 7-5-1 network architecture (provided
as supporting information) was obtained after rigor-
ous trial and error procedure.

The obtained R2, R2
CV, and s are 0.8661, 0.8578, and

0.69, respectively, which indicate good agreement
between the correlation and the variation in the data.
The large F ratio of 375.2 indicates that the ANN
model does an excellent job of predicting the logCX

values. The following statistical parameters are
obtained for the test set, which obviously satisfy the
generally accepted condition and thus demonstrate
the predictive power of the present ANN model:

R2
CV;ext ¼ 0:827 > 0:5

r2 ¼ 0:922 ¼ 0:848 > 0:6

ðr2 � r20Þ=r2 ¼ ð0:848� 0:996Þ=0:848 < 0:1

or ðr2 � r020Þ=r2 ¼ ð0:848� 0:998Þ=0:848 < 0:1

0:85 � k ¼ 0:963 � 1:15 or 0:85 � k0 ¼ 0:974 � 1:15

The calculated logCX values by the ANN model
were given in Table I and Figure 3. According to
95% statistical reliability level (61.38), three com-
pounds (1-propenaloxime, 1-chlorobutane, 1-bromo-

butane) are outliers. The distributions of the absolute
errors (AEs) predicted with the present MLRA and
ANN models for the entire dataset were given in
Figure 4. The mean absolute errors (MAEs) from the
MLRA and ANN models for the entire dataset are
0.636 and 0.513, respectively. The statistical fit of the
ANN model is better than the present MLRA model
and the linear five-parameter correlation by Ignatz-
Hoover et al.3 (MAE ¼ 0.636, our calculation), which
confirms practically that ANN has a better general-
ization performance than the traditional linear
regression method in solving this kind of nonlinear
problem, and can describe the relationship between
the structural information and chain-transfer con-
stants more effectively. It is noteworthy that both
models give poor predictive results for 1-propena-
loxime, thus this compound can be considered as an
outlier perhaps due to the experimental uncertain-
ties. The experimental CX values used in this work

Figure 2 R2 vs. the number of neurons in the hidden layer.
Figure 3 Plot of predicted vs. experimental values of log
CX using the ANNmodel. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

Figure 4 Distributions of relative errors predicted with
the MLRA and ANN models for the whole data set.
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were taken from various sources and contain consid-
erable variance since different measuring methods
were employed for the molecular weight in the
determination of CX. As a result, the experimental
uncertainties in CX can be quite large.

Descriptor interpretation

The descriptors appearing in the present models can
be classified as follows: (1) a Randic molecular
profile, SHP2; (2) a geometrical descriptor, G2; (3) a
3D-MoRSE descriptor, Mor20u; (4) a GETAWAY
descriptor, RTuþ; and (4) three functional group
counts, nCconj, nRCOX, and nArOH.

Based on a previously described procedure,52,53

the relative contributions of the seven descriptors to
the ANN model were determined and are plotted in
Figure 5. The significance of these descriptors
decreases in the following order: G2 (23.7%) >
nCconj (14.4%) > nArOH (14.2%) > nRCOX (12.5%)
> RTuþ (12.0%) > SHP2 (11.7%) > Mor20u (11.4%).
The most significant descriptor is the gravitational
index G2, which explains 23.7% contribution of the
total, much higher than those of the other descrip-
tors. However, the contribution difference between
any two descriptors (except G2) used in the ANN
model is not remarkable, indicating that all of the
descriptors are important in generating the model.

The gravitational index G2 correlates relatively
high (R ¼ 0.5019) with the target experimental logCX

values. The G2 index is a molecular descriptor reflect-
ing the mass distribution in a molecule, defined as54:

G2 ¼
XnBT
b¼1

mi �mj

r2ij

 !
b

(5)

where mi and mj are the atomic masses of the con-
sidered atoms, rij the corresponding interatomic dis-
tances, nBT the number of chemical bonds in the
molecule, respectively. The G2 index is restricted to
pairs of bonded atoms, which is related to the bulk
cohesiveness of the molecules. The G2 index may be
regarded as responsible for the cavity-forming
effects, because it accounts significantly for molecu-
lar size and the London dispersion forces.54

The average shape profile index of order 2 (SHP2)
is the shape profile index of order 2 (SP02) divided
by the number of atoms with H-depleted connectiv-
ity equal to 1 or 2, where SP02 is calculated as55:

SP02 ¼ 1

2!
�

PnST
i¼1

PnST
j¼1

r2ij

nST
(6)

Here, rij is the geometric distance between the
considered atoms, nST the number of atoms on mo-
lecular periphery (i.e., atoms with H-depleted con-
nectivity equal to 1 or 2). The Randic index SHP2
can be interpreted as the relative molecular area of
the external accessibility.56 This area represents the
total area accessible from the environment surround-
ing the molecule. The SHP2 in the models reflects
the influence of the steric factor on the reactivity of
the transfer agents, which has similar physical
meaning as the first-order Kier and Hall index in the
correlation by Ignatz-Hoover et al.3

Three-dimensional-MoRSE descriptors are the
three-dimensional molecular representations of
structure based on electron diffraction descriptor,57,58

which are calculated by summing atomic weights
viewed by a different angular scattering function.
The values of these descriptor functions are calcu-
lated at 32 evenly distributed values of scattering
angle(s) in the range of 0 to 31 Å�1 from the three
dimensional atomic coordinates of a molecule.
Mor20u is calculated using the following expression:

Morsw ¼
XnAT�1

i¼1

XnAT

j¼iþ1

wi � wj

sinðs � rijÞ
s � rij (7)

where nAT is the number of atoms in the molecule,
wi and wj the unweighted schemes of the considered
atoms, and s the scattering angle. For the case of
Mor20u, s was equal to 19 Å�1. Mor20u increases
with the increased polarizability of a molecule. The
negative correlation coefficient for Mor20u indicates
that the compounds with larger polarizability would
have smaller CX values.
GETAWAY descriptors have been proposed as

chemical structure descriptors derived from a new
representation of molecular structure, the molecular

Figure 5 Relative contributions of the seven descriptors
to the ANN model.
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influence matrix.59,60 These descriptors, as based on
spatial autocorrelation, encode information on the
effective position of substituents and fragments in
the molecular space. RTuþ is calculated as:

RTuþ ¼ maxk maxij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hii � hjj

p
rij

� wi � wj � d k; dij
� � ! !

i 6¼ j and k ¼ 1; 2; :::; 8 ð8Þ

where hii and hjj are the leverages of the ith and jth
atom, dij is the topological distance, and d(k, dij) is a
Dirac-delta function (d ¼ 1 if dij ¼ k, zero otherwise).
The RTuþ descriptor is more correlated with the
structural features like molecular size and shape.

In addition, since G2, RTuþ, SHP2, and Mor20u
encode also three-dimensional information that
depends on the conformation of the molecule, it is
possible to argue that the CX values of the present
set of chain-transfer agents have a considerable de-
pendence on conformational changes. The impor-
tance of certain functional groups [nonaromatic con-
jugated C(sp2), acyl halogenides (aliphatic), and
aromatic hydroxyls] on the CX values is also appa-
rent due to the contributions of nCconj, nArOH, and
nRCOX to the models, which is in agreement with
the well-known high reactivity of these groups in
the chain-transfer reaction. The positive coefficients
of these descriptors confirm that the transfer agents
containing these functional groups more would have
larger CX values.

CONCLUSIONS

In this article, QSPR models for the prediction of
free-radical polymerization chain-transfer constants
(CX) for styrene were developed by MLRA and
ANN. The R2 of the MLRA and ANN models on the
training set is 0.7866 and 0.8661, respectively. The
functional group counts nCconj, nArOH. and
nRCOX present in the models indicate that three
functional groups [nonaromatic conjugated C(sp2),
acyl halogenides (aliphatic), and aromatic hydroxyls]
have considerable effects on the CX values of chain-
transfer agents. Also, the CX values depend signifi-
cantly on the molecular conformational changes as
considering the presence of the 3D-descriptors G2,
RTuþ, SHP2, and Mor20u. The accuracy and robust-
ness of the proposed models are illustrated not only
by calculating their fitness on the training set, but
also by testing their predicting ability on the test set.
Furthermore, it can be seen that the nonlinear ANN
model can describe more accurately the relationship
between the structural parameters and the property.
In summary, this investigation extends the research

method to predict the free-radical polymerization
chain-transfer constants for styrene.

The authors gratefully wish to express their thanks to the
reviewers for critically reviewing the manuscript and mak-
ing important suggestions.
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mol Rapid Commun 2006, 27, 711.
26. Duce, C.; Micheli, A.; Solaro, R.; Starita, A.; Tiné, M. R. Macro-
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